Colocalized neuropeptides activate a central pattern generator by acting on different circuit targets.
نویسندگان
چکیده
In the presence of descending modulatory inputs, the stomatogastric ganglion (STG) of the lobster Homarus americanus generates a triphasic motor pattern, the pyloric rhythm. Red pigment-concentrating hormone (RPCH) and Cancer borealis tachykinin-related peptide (CabTRP) are colocalized in a pair of fibers that project into the neuropil of the STG. When the STG was isolated from anterior ganglia modulatory inputs, the lateral pyloric (LP) and pyloric (PY) neurons became silent, whereas the anterior burster (AB) and pyloric dilator (PD) neurons were rhythmically active at a low frequency. Exogenous application of 10(-6) m RPCH activated the LP neuron but not the PY neurons; 10(-6) m CabTRP activated the PY neurons but not the LP neuron. The actions of RPCH on the LP neuron and CabTRP on the PY neurons persisted when the rhythmic drive from the PD and AB neurons was removed, suggesting that the LP and PY neurons are direct targets for RPCH and CabTRP respectively. Coapplication of 10(-6) m RPCH and 10(-6) m CabTRP elicited triphasic motor patterns with phase relationships resembling those in a preparation with modulatory inputs intact. In summary, cotransmitters acting on different network targets act cooperatively to activate a complete central pattern-generating circuit.
منابع مشابه
Dynamics, Stability Analysis and Control of a Mammal-Like Octopod Robot Driven by Different Central Pattern Generators
In this paper, we studied numerically both kinematic and dynamic models of a biologically inspired mammal-like octopod robot walking with a tetrapod gait. Three different nonlinear oscillators were used to drive the robot’s legs working as central pattern generators. In addition, also a new, relatively simple and efficient model was proposed and investigated. The introduced model of the gait ge...
متن کاملGait Generation for a Bipedal System By Morris-Lecar Central Pattern Generator
The ability to move in complex environments is one of the most important features of humans and animals. In this work, we exploit a bio-inspired method to generate different gaits in a bipedal locomotion system. We use the 4-cell CPG model developed by Pinto [21]. This model has been established on symmetric coupling between the cells which are responsible for generating oscillatory signals. Th...
متن کاملDynamic control of a central pattern generator circuit: a computational model of the snail feeding network.
Central pattern generators (CPGs) are networks underlying rhythmic motor behaviours and they are dynamically regulated by neuronal elements that are extrinsic or intrinsic to the rhythmogenic circuit. In the feeding system of the pond snail, Lymnaea stagnalis, the extrinsic slow oscillator (SO) interneuron controls the frequency of the feeding rhythm and the N3t (tonic) has a dual role; it is a...
متن کاملPeptidergic modulation of neuronal circuitry controlling feeding in Aplysia.
We examined the effects of 3 neuropeptides and the bioactive amine 5-HT on identified motoneurons (B15 and B16) and interneurons (B4, B5) involved in the control of feeding behavior in Aplysia californica. The application of egg-laying hormone (ELH), small cardioactive peptide b (SCPb), and 5-HT elicits distinct patterns of synaptically induced bursting in the neurons, while PheMetArgPheamide (...
متن کاملComparison of extrinsic and intrinsic neuromodulation in two central pattern generator circuits in invertebrates.
There are many sources of modulatory input to CPGs and other types of neuronal circuits. These inputs can change the properties of cells and synapses and dramatically alter the production of motor patterns. Sometimes this enables the production of motor patterns by the circuit. At other times, the modulation allows alternate motor patterns to be produced by a single circuit. Modulatory neurones...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 22 5 شماره
صفحات -
تاریخ انتشار 2002